Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi

Shruti Vidhawan Agarwallaa, Kassapa Ellepolaa, Mariana Caldeira Ferraz da Costab, Guilhermino José Macêdo Fechineb, Julien Luc Paul Morinc, A.H. Castro Netoc, Chaminda Jayampath Seneviratnea, Vinicius Rosaa,c,*

a Faculty of Dentistry, National University of Singapore, Singapore
b Graphene and Nanomaterials Research Centre, MackGraphe, Mackenzie Presbyterian University, Brazil
c Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore

OBJECTIVE

To evaluate the surface and wettability characteristics and the microbial biofilm interaction of graphene coating on titanium.

METHODS

Graphene was deposited on titanium (Control) via a liquid-free technique. The transfer was performed once (TiGS), repeated two (TiGD) and five times (TiGV) and characterized by AFM (n = 10), Raman spectroscopy (n = 10), contact angle and SFE (n = 5). Biofilm formation (n = 3) to Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa and Candida albicans was evaluated after 24 h by CV assay, CFU, XTT and confocal microscopy. Statistics were performed by one-way Anova, Tukey’s tests and Pearson’s correlation analysis at a pre-set significance level of 5 %.

RESULTS

Raman mappings revealed coverage yield of 82 % for TiGS and \(\geq 99 % \) for TiGD and TiGV. Both TiGD and TiGV presented FWHM > 44 cm\(^{-1}\) and \(\log \text{cfu} \) ratio < 0.12, indicating multiple graphene layers and occlusion of defects. The contact angle was significantly higher for TiGD and TiGV (110° and 117°) comparing to the Control (70°). The SFE was lower for TiGD (13.8 mN/m) and TiGV (12.1 mN/m) comparing to Control (38.3 mN/m). TiGD was selected for biofilm assays and exhibited significant reduction in biofilm formation for all microorganisms compared to Control. There were statistical correlations between the high contact angle and low SFE of TiGD and decreased biofilm formation.

SIGNIFICANCE

TiGD presented high quality and coverage and decreased biofilm formation for all species. The increased hydrophobicity of graphene films was correlated with the decreased biofilm formation for various species.

© 2018 Published by Elsevier Inc. on behalf of The Academy of Dental Materials.
1. Introduction

Peri-implantitis affects up to 20% of individuals with implants [1]. The disease results from a dysbiotic relationship of pathogenic microorganisms in biofilms accumulated on the surface of implants and the host tissues inducing progressive bone loss [2]. Biofilms are surface-attached, matrix-encased, structured microbial communities [3]. It is now known that at least 65% of all human infections, including peri-implantitis, are caused by microorganisms in the biofilm mode of growth [4]. During the sequence of biofilm formation on implants, the microbiota changes from the initial oral commensal bacteria to the highly pathogenic bacteria similar to the ones found in periodontal pockets of patients suffering from periodontitis [5,6]. In addition, Candida albicans, a major fungal pathogen, has been detected as an opportunistic species in peri-implant lesions. Thus, dental implants can be a potential reservoir for C. albicans associated infections [7].

The current treatment strategies for peri-implantitis include decontamination of the implant sites and infection control. Previous studies using non-chemical methods such as treatment with laser, ultrasound and air abrasion to reduce pathogenic bacterial counts have not produced promising results [8,9]. On the other hand, surgical procedures (e.g., implantoplasty and guided tissue regeneration) are more effective in controlling established peri-implantitis lesions. However, these procedures are costly and demand long maintenance phase [10,11]. Adjunct therapies with anti-septics and systemic antibiotics have also not been very successful in improving clinical and microbiological parameters in peri-implant disease [12,13]. Moreover, pathogens isolated from the biofilms of peri-implantitis patients have demonstrated resistance to therapeutic concentrations of amoxicillin, clindamycin and other antibiotics under in vitro conditions [14]. Hence, the development of materials that reduce the adherence and biofilm formation of oral pathogenic bacteria and fungi on implant surfaces will be vital to minimize the oral and systemic infections associated with dental implants [7,15].

Dental implants made of titanium do not possess antibacterial properties. Therefore, a number of surface coatings methods have been developed to improve their antibacterial properties [16]. Although silver-based coatings have shown to improve general antibacterial activity on titanium, they are not specific in damaging bacterial cells, and are susceptible to oxidative dissolution and corrosion [17–19]. Combinations of antibiotics with chitosan or hydroxyapatite have potential to prevent infection on titanium [20,21]. However, development of antibiotic resistance is a concern in this approach. In addition, unfavourable mechanical properties of these materials, and lack of optimal release kinetics [22] warrants further studies on anti-biofilm surface coatings.

Graphene is an atom-thick layer of carbon atoms that can impact several dental biomedical applications [23]. It can be used as cyto-compatible substrates and scaffolds to induce spontaneous osteoblastic differentiation and mineralization [24–27]. Moreover, graphene and its derivatives have shown promising anti-bacterial effects. The addition of graphene dispersed in poly(vinyl alcohol) matrix was capable to disrupt the growth of Escherichia coli (E. coli) and Staphylococcus aureus [28]. Graphene oxide decreases bacterial viability possibly due to physical disruption and chemical oxidation (e.g., membrane stress and ROS-independent oxidative stress [29,30]). Remarkably, atom-thick graphene film emerges as a promising coating. It can be deposited onto full-sized dental implants and other three-dimensional orthopedic parts such as locking and compression plates [31]. Moreover, graphene film can prevent bacterial growth [32]. The reasons for such antibacterial effects remain largely unknown. One of the theories, the facile transfer of electrons from microbial membranes to graphene on conductive substrates, has been disproved [33]. Hence, understanding the mechanisms underlying the antibiofilm potential of graphene can lead to the development of the next-generation of implants, less susceptible to infections. The objective of this work was to evaluate the surface characteristics viz. coverage, number of layers, and superficial characteristics of a graphene film on titanium that render promising antimicrobial properties against oral bacterial and fungal pathogens. The hypothesis was that graphene inhibits biofilm proliferation by decreasing surface free energy (SFE) of the titanium surface.

2. Materials and methods

2.1. Sample preparation

Medical grade 4 titanium discs (Control, 12 mm diameter, 1 mm thick, Vulcanium, USA) were polished with silicon carbide paper (up to 2500 p, 150 rpm, 20 N). Thereafter, the samples were washed in ultrasonic bath with acetone, isopropanol and deionized water (20 min each).

Graphene was grown by single operator using a custom-built furnace in a Class 1000 clean room facility at the NUS Centre for Advanced 2D Materials and Graphene Research Centre as previously described [24]. The graphene film was transferred onto the discs using the vacuum assisted transfer technique. Firstly, the graphene coated copper foil was covered with polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning Corporation, USA), spin coated at 1000 rpm and cured (135 °C, 20 min). A polyimide tape (3M, USA) was placed on top of the PDMS and the copper foil was etched away in a 1.5% ammonium persulfate solution. The transfer tape (polyimide/PDMS/graphene) was washed in deionized water (2 h) and gently blow-dried with N2. Afterwards, the transfer tape was placed onto the disc, positioned in between two pre-fabricated PDMS square molds and inserted in a vacuum-sealing pouch. The set was placed in a vacuum chamber (Fig. 1) and the pressure was reduced to 0.02 bar for 60 s. Thereafter, the PDMS molds were removed and the transfer tape was peeled off leaving the graphene over the disc (TiGS). Afterward, freshly prepared transfer tapes were used for double (TiGD) and five times transfers (TiGV). Additional control was created to evaluate the quality of the transfer by depositing graphene onto SiO2 (285 nm thick) on Si wafer which is widely used for the detection and characterization of single and multiple layers of graphene [34].
2.2. **Surface characterization: Raman spectroscopy, atomic force microscope and wettability**

Ten samples of each group were subjected for Raman (Raman Microscope CRM 200, Witec, Germany) and atomic force microscope (AFM, Bruker AXS, Germany) characterization. To evaluate the quality and coverage of the graphene coating, Raman spectrum for G (~1580 cm\(^{-1}\)), D (~1354 cm\(^{-1}\)) and 2D peaks (2680 cm\(^{-1}\)) were acquired (10 mappings per sample) as previously described [25]. Surface topography and roughness were analysed using tapping mode AFM with a silicon nitride tip (resonance frequency: 40–90 kHz; spring constant 0.4 N/m).

The contact angle measurements were determined at room temperature by dispensing 15 µL droplet of deionized water onto the surface of the samples (n = 5, 10 readings per sample, Drop Shape Analyzer DSA25, Kruss GmbH, Germany). The SFE, polar and non-polar components were obtained using the Owens, Wendt, Rabel and Kaelble (OWRK) method (Table 2 [35]).

2.3. **Microbial culture and biofilm formation**

Three bacterial strains (gram positive: Streptococcus mutans UA159 and Enterococcus faecalis ATCC 29212; gram negative: Pseudomonas aeruginosa PAO1) and one fungal strain (C. albicans SC5314) were used for the study. For routine use, S. mutans and E. faecalis were subcultured on brain heart infusion (BHI) agar (Sigma-Aldrich, USA) and P. aeruginosa was subcultured on nutrient agar. C. albicans was subcultured on Glucose minimal medium (GMM) agar. S. mutans and E. faecalis were inoculated in BHI broth and P. aeruginosa was inoculated in nutrient broth and incubated for 16 h at 37 °C in an orbital shaker incubator at 80 rpm. Microbial cultures were then centrifuged at 5000 rpm for 5 min at 4 °C. Thereafter, the pellets were re-suspended in 1 ml of new medium and optical density (OD) was adjusted to 0.5 to 0.6 at a wavelength of 600 nm (approx. 10^7 cells/ml).

Similarly, C. albicans was taken from GMM agar plates, inoculated and grown in GMM medium and adjusted to an optical density of 0.375 to 0.385 at a wavelength of 520 nm (approx. 10^7 cells/ml).

2.4. **In vitro biofilm formation**

Biofilm formation was carried out in pre-sterilized, polystyrene, flat-bottomed, 24 well microtiter plate (Greiner bio-one, Singapore) as previously described [36]. The titanium disks were placed inside each well (n = 3) and washed with PBS and dried.

The disks were completely immersed in 1 ml of the OD adjusted cell suspensions. The biofilm was allowed to develop for 24 h at 37 °C in an orbital shaker incubator at 80 rpm.

2.5. **Crystal violet assay**

Crystal violet (CV) assay [37] was performed to quantify the total biofilm biomass of S. mutans, E. faecalis, and P. aeruginosa, respectively. After 24 h, the biofilms were washed gently with PBS applied on the side wall of the well to remove the non-adherent cells. Further, biofilms were fixed with 2% formalin at room temperature for 15 min. Subsequently, the discs were transferred to new wells, after which 1 ml of 1% crystal violet stain (Sigma-Aldrich) was added into each well for 5 min and then washed three times with PBS to remove the excess stain. Subsequently, 500 µL of 95% ethanol was added into each well and incubated for 15 min. After incubation 200 µL of ethanol was transferred to a new 96 well plate (Greiner bio-one, Singapore). The absorbance was measured at 570 nm using a spectrophotometer (MultiSkans GO, Thermo Scientific, USA).

2.6. **XTT reduction assay**

XTT assay was performed to evaluate the metabolic activity of C. albicans as described previously [38]. After 24 h, the biofilms were washed gently with PBS applied on the side wall of the well to remove the non-adherent cells and the discs were transferred to new wells. Subsequently, 1 ml of
XTT-menadione solution was added into each well. Following incubation in dark at 37 °C for 20 min, 200 μl of solution was transferred to a 96 well plate and the colorimetric changes were measured by using a spectrophotometer at 490 nm.

2.7. Colony forming unit assay (CFU)

For colony forming units (CFU) counting, the biofilms formed over 24 h were washed gently with PBS. Subsequently the discs were immersed in PBS and the attached biofilms were disassociated by vigorous agitation for 3 min. A dilution series was prepared in PBS for the cell suspensions obtained from the respective biofilms. A volume of 100 μl from each dilution was plated on BHI (for S. mutans and E. faecalis), nutrient agar (for P. aeruginosa) and GMM agar (for C. albicans) for enumeration. The bacterial and fungal plates were grown for 24 h at 37 °C and 30 °C respectively. The colonies were counted and the corresponding log CFU values were calculated.

2.8. Confocal laser scanning microscopy (CLSM)

All microbial biofilms grown on Control and TiGD for 24 h were imaged using confocal microscopy. The bacterial biofilms were stained with SYTO-9 (excitation/emission 485/498 nm) and propidium iodide (excitation/emission 535/617 nm). C. albicans biofilms were stained with calcofluor white (excitation/emission 365/435 nm) according to a previously described protocol [39]. Stained biofilms were visualized using confocal microscope (Fluoview FV1000 TIRF, Olympus, Japan) and three-dimensional reconstructions obtained. Five random fields were analysed, and Z sections were reconstructed from three biological replicates for the quantification of the biovolume (Imaris 9.1, Bitplane AG, Switzerland).

2.9. Statistical analysis

All groups had three biological samples and the experiments were performed in independent triplicates. Shapiro–Wilk and Lavene’s tests were performed for checking normality and homogeneity. One-way ANOVA and Tukey’s test were used to analyze the data pertaining the wetting properties and microbial assays. Pearson’s correlation analysis was used to determine the correlation between the microbial measurements (CV assay and CFU) and material properties (contact angle and SFE). A pre-set significance level of 5% was considered for all tests.

3. Results

3.1. Graphene coated titanium: surface and coverage characterization

The surface of graphene coated samples presented folds and bundles (arrows) and lower Ra with the increase in graphene transfers (Fig. 2). The Raman mappings revealed a coverage yield of 82% on TiGS and >99% for TiGD and TiGV (Table 1 and Figs. 3 and 4). Notably, the I2D/IG ratio (indicative of defects) decreased with the increase of transfer procedures (Table 1).

The wetting characteristic are shown in Table 2. As approximately 20% of TiGS remained uncoated, the droplets

<table>
<thead>
<tr>
<th>Coverage (%)</th>
<th>FWHM</th>
<th>I2D/IG</th>
<th>I0/I_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiGS</td>
<td>82.0</td>
<td>34.4</td>
<td>1.18</td>
</tr>
<tr>
<td>TiGD</td>
<td>99.1</td>
<td>44.1</td>
<td>1.26</td>
</tr>
<tr>
<td>TiGV</td>
<td>99.8</td>
<td>57.7</td>
<td>0.78</td>
</tr>
</tbody>
</table>
Table 2 – Wettability characterization of the groups tested. All the graphene coatings increased the hydrohobicity of grade 4 titanium. The results highlight the stronger hydrophobic trait of the samples as more graphene transfers are performed (different superscript letters in the same row indicate significant differences, p < 0.05).

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>TIGS</th>
<th>TiGD</th>
<th>TiGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact angle (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>70.2 (1.9)d</td>
<td>92.7 (2.2)c</td>
<td>110.4 (1.3)b</td>
<td>117.3 (2.4)a</td>
</tr>
<tr>
<td>Glycerol</td>
<td>59.0 (4.0)c</td>
<td>92.2 (4.1)b</td>
<td>110.8 (1.3)a</td>
<td>111.5 (4.0)a</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>42.4 (1.6)c</td>
<td>79.3 (0.7)b</td>
<td>91.0 (4.6)a</td>
<td>95.8 (4.6)a</td>
</tr>
<tr>
<td>Diiodomethane</td>
<td>54.4 (5.0)d</td>
<td>73.3 (5.5)c</td>
<td>80.9 (4.3)b</td>
<td>91.7 (4.3)c</td>
</tr>
<tr>
<td>Surface free energy (mN/m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disperse component</td>
<td>38.3 (5.0)a</td>
<td>18.1 (2.5)b</td>
<td>13.8 (1.6)c</td>
<td>12.1 (2.8)c</td>
</tr>
<tr>
<td>Polar component</td>
<td>28.9 (3.1)a</td>
<td>14.3 (1.4)b</td>
<td>12.6 (1.2)b</td>
<td>11.7 (2.6)b</td>
</tr>
<tr>
<td>Interfacial tension</td>
<td>17.2 (1.3)d</td>
<td>28.0 (4.9)c</td>
<td>37.9 (7.2)b</td>
<td>46.4 (4.1)a</td>
</tr>
</tbody>
</table>

Fig. 3 – Raman characterization of graphene coated on titanium by vacuum assisted dry transfer. The analyses of FWHM (cm⁻¹) and I₂D/I_G indicate the increase in the number of graphene layers in TiGD and TiGV as compared to TIGS. I₂D/I_G ratio demonstrates a prominent overall decrease in defect distribution in TiGD and TiGV compared to TIGS (black pixels indicating absence of graphene, mappings scale in μm).

were deposited on areas fully coated with graphene. There were significant increases in contact angles for all liquids on the graphene-coated specimens compared to the Control (p < 0.05). Also, there were significant decreases in the SFE and increases in the interfacial tension with the increase in number of graphene transfers (p < 0.05).

Finally, as the single transfer covered only ~80% of the sample surface, the TIGS group was excluded from further microbiological analysis.
3.2. Biofilm quantification

CV assay and CFU showed significant decreases in both C. albicans and S. mutans when cultured on the graphene-coated specimens as compared to the Control (Fig. 5, p < 0.05). However, the increase in number of graphene layers (TiGV) failed to decrease further the microbial growth and number of CFUs (p > 0.05). Hence, only the antibacterial potential of TiGD was evaluated for E. faealis and P. aeruginosa. Notably, TiGD had significantly decreased the biofilm accumulation for all species tested compared to the Control (p < 0.05).

Fig. 4 – The scatter plots of I_{2D}/I_{G}-FWHM obtained on titanium reflect the morphological changes with the different transfers respectively had similar pattern compared to those obtained for graphene transferred onto SiO₂ wafer.
The CLSM revealed less biofilm formation of all bacterial species on TiGD compared to Control (Fig. 6). For C. albicans, TiGD reduced the biofilm formation and hyphal growth while the Control presented the typical architecture of cells bundled together with intermittent hyphal distribution (red arrows in Fig. 6, p < 0.05 for biovolume).

The Pearson’s correlation analysis confirmed a correlation for increased contact angle and decreased SFE with respect to lower microbial quantification (Table 3).

4. Discussion

Anti-adhesive coating is one of the most promising strategies to reduce biofilm formation on implant surfaces [16]. Herein, we have successfully decreased the accumulation of gram-positive, gram-negative and fungal biofilms on titanium by coating its surface with graphene films.

We have successfully deposited graphene onto titanium without the use of liquids and hazardous chemicals during the transfer procedure. The surface of the coated samples presented folds and bundles (Fig. 2) indicative of the presence of graphene [31]. The folds are attributed to the transfer tape that adapts to the substrate topography at a nanometric scale decreasing the roughness by only 36 nm after five transfers. TiGS presented a coverage yield of 82% (Table 1) that was lower than the one obtained by the hot-pressing method (>90%) for a single transfer step [32]. Nonetheless, the repetition of the transfer procedure increased the coverage area to 99% (Fig. 3 and Table 1). TiGS presented a FWHM of 34.4 cm\(^{-1}\) that is closer to the characteristic of single layer whereas the values for TiGD and TiGV were ≥44.1 cm\(^{-1}\) that are consonant with increased number of graphene layers [40]. TiGD and TiGV presented lower I\(_D\)/I\(_G\) ratio compared to TiGS confirming the occlusion of the defective areas [41]. The reliability of the transfer technique was confirmed on SiO\(_2\) on Si wafer. The similar patterns observed in the scatter plots (Fig. 4) confirm that the titanium does not influence negatively the integrity and quality of graphene when this technique is employed.

The Raman characterization showed high quality, homogeneous and continuous graphene coverage on the titanium discs (Fig. 3). Previous publications have shown that CVD-grown graphene can be deposited on metals [31,42] and full-sized dental implants [31] and that the coating keeps its characteristics upon exposure to water, biomolecules and human cells [31,43]. The nature of interactions between graphene and titanium and other metals are not entirely known. In fact, chemisorbed metals interact with graphene by forming a chemical bond whereas on the physisorbed metals no chemical bonding is formed [44,45]. Recent studies have shown that the interactions between graphene films and titanium (pure and grade 5 titanium alloy) result in a red shift of the 2D and G peaks [31,46]. Hence, it is possible that the titanium atoms diffuse at the surface of graphene creating bonds with the carbon atoms under them or occupying carbon atom vacancies [46].

Subsequently, we investigated the wetting characteristics (Table 2). Previous study suggested that graphene does not alter solid-liquid interactions regardless of the background substrate [47] while other affirmed that such effect breaks down depending on the material on which graphene is deposited [48]. Here, the contact angles of graphene-coated titanium were higher than the Control and similar to those observed for graphene on other substrates [49]. This suggests that graphene can subdue the hydrophilicity of the underlying substrate. Furthermore, the concomitant increase in hydrophobicity with number of transfers can be related to (i)
Fig. 6 – Biofilm formation. Biofilms were stained with SYTO-9 (green) and propidium iodide (red) and imaged with CLSM. The images revealed that TiGD decreased biofilm formation for all microorganisms tested. C. albicans biofilms exhibited limited hyphal occurrence (arrows) on TiGD compared to the typical bundled biofilm with hyphal formation on the Control. Moreover, there were less biofilm formation on TiGD for S. mutans, E. faecalis and P. aeruginosa compared to the Control. Note the significant (*) reduction of biovolume represented on the bar graph on TiGD for all the microbial species tested (p < 0.05). (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 3 – Pearson’s correlation coefficient describing the relationship between material properties and microbial biofilm formation. The coefficients highlight the effects of high contact angle and low SFE on decreased biofilm formation (CV assay and CFU).

<table>
<thead>
<tr>
<th></th>
<th>CVA</th>
<th>CFU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson's r</td>
<td>p-Value</td>
</tr>
<tr>
<td>Contact angle (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>−0.6679</td>
<td>0.0493</td>
</tr>
<tr>
<td>S. mutans</td>
<td>−0.9453</td>
<td>0.0001</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>−0.9423</td>
<td>0.0049</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>−0.9882</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface free energy (SFE, mN/m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>0.6811</td>
<td>0.0434</td>
</tr>
<tr>
<td>S. mutans</td>
<td>0.9873</td>
<td>0.0038</td>
</tr>
<tr>
<td>E. faecalis</td>
<td>0.9791</td>
<td>0.0006</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>0.9712</td>
<td>0.0058</td>
</tr>
</tbody>
</table>
the occlusion of defects that brings homogeneity on the surface (Fig. 3 and Table 2) hampering the direct interaction of the liquids with the supporting substrate [50], and (ii) the decrease in I_p/I_o ratio (Table 1) which relates to higher interaction of graphene with the substrate or vacancies, decreasing both the polarity and the SFE [51,52].

C. albicans have been identified in 10 to 31% of peri-implantitis sites and may be associated with implant failure [6,53,54]. TiGD decreased the total CFU counts and the biovolume for C. albicans comparing to the Control. Moreover, the decreased hyphae formation on TiGD (arrows in Fig. 7) may indicate a potential of using a TiGD to decrease C. albicans virulence. A previous study that showed that lowering titanium SFE from 46 to 38 mN/m reduced C. albicans’ CFU counts by 73% [55]. As the surface roughness was kept at the nanometric scale (Fig. 2), the decreases may be related to the low SFE of the graphene coatings (Table 2). In fact, there were statistical correlations between the lower SFE of TiGD and TiGV and decreases in total CFU (Table 3).

S. mutans and E. faecalis accumulate on the surface of implants in vivo and have been identified in high quantities in the peri-implant environment of diseased implants [56,57]. Likewise, gram-negative rods (e.g., Pseudomonas spp. and Klebsiella spp.) have been identified at heavy growth mode in increased number of patients with peri-implantitis [53,58]. P. aeruginosa exhibits extremely drug-resistant phenotypes and some of the strains are resistant to all types of antipseudomonal agents except polymyxins [59]. Notably, TiGD presented great potential to decrease early biofilm formation from these gram-positive and gram-negative bacterial strains (Figs. 5 and 6).

Bacteria can effectively adhere to materials with a degree of hydrophilicity (water contact angle of 40–70°) [60] like our Control (Table 2). Furthermore, several bacterial cell walls present high SFE that hamper their adherence to hydrophobic surfaces with reduced SFE [61–63]. Previously, coatings with SFE in the range of 21–29 mN/m have reduced E. coli adhesion by 68 to 94% [64]. Likewise, pyrolytic carbon valve models with low SFE (31 mN/m) presented less counts of P. aeruginosa compared to valve with SFE of 41 mN/m [65]. Moreover, lowering the titanium SFE decreased bacterial colonization and delayed biofilm maturation in vivo [66]. Hence, the decreases in biofilm accumulation observed on TiGD (Figs. 5 and 6) can be related to the significantly lower SFE provided by the coating (13.8 mN/m) compared to the Control (38.3 mN/m). There were statistical correlations between the SFE and contact angles and bacterial biofilm formation (Table 3) to confirm this hypothesis. In addition, the polar component of TiGD (1.7 mN/m) may contribute to the lower attachment of the bacteria and fungi onto the coated surfaces since low polar component (5 mN/m) decreases protein adherence [67].

Despite of having the lowest SFE (Table 2), TiGV failed to promote significant decrease in the biofilm formation for S. mutans and C. albicans compared to TiGD (Fig. 5). This suggests that once a homogenous graphene coating on titanium is established, changes in SFE of the graphene coating may be irrelevant to microbial interaction. In fact, previous studies have shown that each material present an optimum range of SFE in which the absorption and adhesion of specific proteins and bacteria are significantly decreased [68,69].

Despite the promising results, this work has some limitations. Although the study exhibits a robust antimicrobial potential of graphene, it is in a single species scenario. Therefore, further research is warranted to explore the effect of graphene on mixed microbial communities over time. However, the graphene coated titanium has potential to decrease microbial biofilm formation. This new technique may have an edge over other traditional coatings as it does not rely on antibiotics, is chemically stable, cytocompatible and can be successfully applied onto dental implants without the use of hazardous chemicals [24,25,31]. Future studies are needed to evaluate the extent of the biofilm potential of graphene compared to the existing alternatives under both in vitro and in vivo conditions.

5. Conclusion

CVD-grown graphene was successfully transferred on titanium via a dry transfer technique without the use of hazardous chemicals with a high-quality homogeneous coverage area of 99% and above. The hydrophilicity of titanium was strongly affected by the presence of the graphene coating. The graphene coatings decreased biofilm formation of bacterial and fungal species on titanium. However, there was no further significant change in the SFE and polar component after two graphene transfers. The high contact angle, low SFE and polar components of the graphene coating are the possible contributory factors that decreased biofilm formation.

Acknowledgements

The authors want to acknowledge Ms. Sim Yu Fan for the statistical support provided. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This research was supported by the National Research Foundation, Prime Minister’ Office, Singapore, under its Medium Sized Centre Program and by the grants from the Singapore Ministry of Education, Singapore (Academic Research Fund Tier 1, R-221-000-091-112, VR), National University Health System, Singapore (NUHS Open Collaborative Research Grant NUHS O-CRG 2016 Oct-25, NUHS Seed Grant Call FY2018 Sep-07, VR) and National Medical Research Council Singapore (NMRC/CIRG/1408/2014, CJS).

References

